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INFLUENCE OF THE MARANGONI EFFECT ON THE STABILITY OF FLOWS 

OF STRATIFIED LIQUIDS 

I. U. Subaev and M. M. Khansanov UDC 532.59 

A study is made of the effect of a change in interfacial tension on the stability 
of shear flows of two-component systems. A linear analysis of the stability of 
motion is performed using the concept of waves of negative energy. 

INTRODUCTION 

Shear flows of stratified media take place in the pipeline transport of multicomponent 
systems. Instability of these flows causes internal waves to be generated in the fluid. 
Capillary waves at the interfaces play an important role in the generation and propagation of 
such waves [i, 2]. 

In the present study, we examine the problem of the generation of capillary waves in an 
incompressible two-layer liquid with a tangential velocity discontinuity accompanying mani- 
festation of the Marangoni effect -- a change in interfacial tension which leads to the motion 
of adjacent volumes of fluid. 

The change in interfacial tension may be due to the presence of surfactants or (in the 
case of charged systems) the interaction of charges and dipoles in electric double layers, 
since surface-active ions have a substantial effect on the electrical component of inter- 
facial tension [3]. Since the tension of the "film" of surfactant under the influence of 
perturbations of the surface is described in a manner wholly analogous to the tension of a 
"film" of ions, we will limit ourselves to consideration of the effect of surfactants. 

As is known, Kelvin--Helmholtz instability occurs during the motion of a two-layer liquid 
in the region of fairly large wave numbers. Waves with negative energy are present in the 
region of lower wave numbers, these waves becoming unstable when allowance is made for the 
factors which deplete them of their energy [4, 5]. Such waves are of particular interest to 
us, since it is they that promote long-wave instability. The latter phenomenon, in turn, has 
a serious adverse effect on the efficiency with which stratified liquids can be transported. 
In physical terms, waves with negative energy are waves for which an increase in amplitude 
is accompanied by a decrease in the total energy of the system. The concept of negative 
energy waves was first proposed in studies dealing with electronics and plasma physics [6, 7]. 
It was later shown that such waves can also be generated in the presence of shear flows in 
hydrodynamics [4, 5]. 

In the present investigation, we examine the influence of the Marangoni effect on nega- 
tive energy waves in a two-layer liquid. It is shown that when such waves are present, the 
use of surfactants may intensify small disturbances of the interface. 

We will examine the motion of two layers of liquid with a sharp interface. The two- 
dimensional motion of the liquid in a linear approximation is described by the equations 
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Assuming the thickness of the layers of liquid to be large compared to the character- 
istic wavelength, we will limit ourselves to assigning the conditions on the'interface z = 
D(x, t) (in the undisturbed state, ~ ~ 0). We obtain 

On an . 
~J = ~ + "'J 0-2' (2) 
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We will evaluate the effect of the surfactant on the wave motion of the liquid. Let F 
be the surface concentration of surfactant at the interface. Then 

0 ~  OF 
~ = ~ ( f ) ;  P ~ =  / - ~ ) O x  

Ignoring surface and bulk diffusion, we write the conservation equation for the surfac- 
tant in the form 

OF 0 
0-F + T x  [c (.0~ + ~'~m)] = 0. 

A value of m = 1 in the last equation means that the surfactant is soluble in liquid i; if 
the surfactant is soluble in liquid 2, then m = 2. Writing F = F 0 + F', where F 0 is the 
concentration at theundeformed interface, when F'/F 0 << 1 we obtain 

Of' Ou~ 0F'  _ 0 .  ( 3 )  
O--t--- + c~ + uom ax 

Assuming that DI/P~ << i, we ignore the viscosity of the upper layer of liquid. Since 
discontinuous flow profiles are allowed at Pl = 0, we take the function in the following 
simple form: 

where 

Uoj = Ju0, ]=1 .  
I0, ] : 2. 

The s o l u t i o n  o f  t h e  a b o v e - f o r m u l a t e d  p rob lem has  t h e  form [2 ] :  

uj = Dj (z) ei<~-~o; 

vj -= E 1 (z) ei(kx-~o; 
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Having set F, q ~e i(kx-mt), we can use (1-4) to obtain dispersion relations: 

atm=2 
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where 
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According to [2], E ~ 10-s/X, where X is the wavelength, m. 

small and, in a first approximation, viscosity v 2 can be ignored. 
reduced to the equation 

- ( ) = 2 + E ~2i8(~ l - -  1 ; 
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Thus, the quantity s is 
At s + 0, (5) and (6) are 

(7) 

where 

F = 
1 @ E a t  m = 1; 

1 a t  m = 2 .  

We can easily use this dispersion equation to obtain the relation 

sr ~-- ~ / F  (S -}- 1) -- sr z u o 
s-t- 1 co (8) 

the graph of which is shown in Fig. 1 (q  = ] / ' F - ~ ;  r~ l~ F(s@l)/s). 
dispersion curve at 0 < r < r 2 

a Z o  _ 2 [(s + l )  6] - -  sd < O, 

while at r I < r < r 2 ~ > 0. 

Since the energy of the waves can be represented in the form [5, 

af0 
W = ~ a 2, 

On the lower branch of the 

8] 
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then at r I < r < r 2 waves with negative energy exist in the system of reference being examined. 

The region r > r 2 corresponds to Kelvin-Helmholtz instability. As is known [2], 

Co~Cmt n~--0.2 m/sec 

In the region of negative energies, u 0 

energy can exist at u 0 > 0.2 m/sec. 

> rlc 0. Since r I - i, then waves with negative 

To study the dependence of ~ on the wave number k, we rewrite (8) in the form 

Saok _+ V [( 1 - -  s) gk + ~,k~l (t + s) - -  su~k 2 
c o =  s + l  ' 

where 

f~o( l  + N) at m = 1 
O~ 1 

[~o at m = 2, 
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where 

k/ko; ko (1 2 o = -  = -- s ) g/u~s; 

The dispersion curves obtained when ~<I/4; I/4<~<(I ~-s)2/4; ~>(I+s)2/4 are shown in 
Fig. 2, a-c, respectively. In these figures 

(1 + s) -~ V i l  -+- s) 2 - -  4~ (I -]- s) 2 

~ 1 - T  ] / / 1  - -  4{~ 1 
k ~ =  2~ ' ~ ~ - 4 -  

The sections of the curves corresponding to waves with negative energy are hatched. 

Let us determine the real values of 6- Having set a 0 = 5.10 -5 ma/sec 2 and s = 0.8, 
obtain 

w e  

where u 0 is measured in m/sec. If 0.2 m/sec ~ u 0 ~ 1 m/sec, then 4.10 -4 ~ $ ~ 1/4. 

At ~4.10-~ %1 = 2 m; %z = 2"10 -~ m;where~ ~ I/4 %1 = 6"10-3m; ~ ~ 3.10 -4 m, m/sec, %i = 2~/~ik0. 

Now let us consider the case of low viscosity (low value of e). First we will examine 
the region of purely capillary waves (~ < i0 -a m). For such waves, e~ = ~0k 3, E = N. Con- 
sidering that 

N ~ I ,  ~ . . . . .  V (I-0, 
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Fig. 1. Dependence of dimensionless 

frequency co on r. 
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F i g .  2. Dependence  o f  f r e q u e n c y  co on 
t h e  d i m e n s i o n l e s s  wave number ~:. 

t o  w i t h i n  r  we o b t a i n  t h e  f o l l o w i n g  from (6)  

~~ |/--~-- (1 + 0 : 0 .  Z ~  Zo+- T -  T 

It is easily found from this that the imaginary complement to the frequency ~ is determined 
by the expression 

CO' --- 
'2 o~ \ a c o  j 

For waves with negative energy, co' > 0. Such a situation leads to instability. 

For a pure surface, N = 0 and ~'=~0 =--(2~)/(0Zo/8~). Thus, for waves with negaive 
energy we again obtain m~ > O. The ratio of the amplification factors is 

~t 
_ , - ~  ~ - o . 5  >> I. 
COO 
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Thus, the presence of the surfactant leads to amplification of waves with negative 
energy. Meanwhile, the amplification factor on a surface covered by a surfactant turns out 
to be considerably larger than the factor on a pure surface. 

In the long-capillary-wave approximation, ~0 ~ g k .  At k - 102 m -I, we can assume that 
L 

~.. ~< ~ _  <~ E << E - . 
# k 

To w i t h i n  i n f i n i t e s i m a l s  o f  o r d e r  E ,  we f i n d  f r o m  ( 5 )  t h a t  

/~--z .... 

- - ' O Z 0  ]-1 
g t i 

The ratio of the amplification factors is 

0)' 
-~ s  ~ >, 1. 

O) 0 

Thus, the surfactant also exerts a substantial amplifying effect in the region of long 
capillary waves with negative energy. Similar results can be obtained for m = i. 

It should be noted that in the case of waves with positive energy, the effect of the 
surfactant leads to attenuation of capillary waves [i, 2]. 

CONCLUSION 

It was concluded above that the presence of surface-active agents leads to amplification 
of long capillary waves with negative energy. This conclusion can be put to broad use in con- 
trolling the transport of multicomponent media, since capillary waves [i, 2] assist in the 
formation and buildup of gravitational waves. The latter in turn lead to undesirable pulsa- 
tions of fluid pressure and velocity. Surface-active agents can be present in transported 
media in the form of impurities, but sometimes they must be specially introduced (as corro- 
sion inhibitors, for example) [9]. As has already been noted, the manifestation of the 
Marangoni effect might also be connected with the presence of surface-active ions which 
alter the electrical component of surface tension. Thus, under certain conditions, the 
effect of surface-active ions on the attenuation or intensification of waves may be just as 
important. This fact might in particular explain some of the phenomena associated with the 
effect of weak electromagnetic fields on the flow of multicomponent media. 

NOTATION 

pj, pj, and ~j, density, viscosity, and kinematic viscosity of the j-th layer (j = 1 and 
j = 2 correspond to the upper and lower layers); c = u/k, phase velocity; ~, frequency; k, wave 
number; u0j(z), velocities of the fluids in the undisturbed state; uj and vj, perturbations 
of velocities along the x and z axes, respectively; o(F), surface tension; pj, pressure; g, 
acceleration due to gravity; c0=~/~0; 0)~ ~(l--s)gk+a&3; s=pllp2; ~0=~0/.o~; c0=~dk: ~=2v~k2/(00; E~ 

r I0~\ Co 82N 8~ 
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